Abstract

BackgroundPlanaxis sulcatus has been touted as a textbook example of poecilogony, with members of this wide-ranging Indo-Pacific marine gastropod said to produce free-swimming veligers as well as brooded juveniles. A recent paper by Wiggering et al. (BMC Evol Biol 20:76, 2020) assessed a mitochondrial gene phylogeny based on partial COI and 16S rRNA sequences for 31 individuals supplemented by observations from the brood pouch of 64 mostly unsequenced individuals. ABGD and bGYMC supported three reciprocally monophyletic clades, with two distributed in the Indo-Pacific, and one restricted to the northern Indian Ocean and Red Sea. Given an apparent lack of correlation between clade membership and morphological differentiation or mode of development, the reported 3.08% maximum K2P model-corrected genetic divergence in COI among all specimens was concluded to represent population structuring. Hence, the hypothesis that phylogenetic structure is evidence of cryptic species was rejected and P. sulcatus was concluded to represent a case of geographic poecilogony.ResultsOur goal was to reassess the case for poecilogony in Planaxis sulcatus with a larger molecular dataset and expanded geographic coverage. We sequenced an additional 55 individuals and included published and unpublished sequence data from other sources, including from Wiggering et al. Our dataset comprised 108 individuals (88 COI, 81 16S rRNA) and included nine countries unrepresented in the previous study. The expanded molecular dataset yielded a maximum K2P model-corrected genetic divergence among all sequenced specimens of 12.09%. The value of 3.08% erroneously reported by Wiggering et al. is the prior maximal distance value that yields a single-species partition in ABGD, and not the maximum K2P intraspecific divergence that can be calculated for the dataset. The bGMYC analysis recognized between two and six subdivisions, while the best-scoring ASAP partitions recognized two, four, or five subdivisions, not all of which were robustly supported in Bayesian and maximum likelihood phylogenetic analyses of the concatenated and single gene datasets. These hypotheses yielded maximum intra-clade genetic distances in COI of 2.56–6.19%, which are more consistent with hypothesized species-level thresholds for marine caenogastropods.ConclusionsBased on our analyses of a more comprehensive dataset, we conclude that the evidence marshalled by Wiggering et al. in support of Planaxis sulcatus comprising a single widespread, highly variable species with geographic poecilogony is unconvincing and requires further investigation in an integrative taxonomic framework.

Highlights

  • Planaxis sulcatus has been touted as a textbook example of poecilogony, with members of this wideranging Indo-Pacific marine gastropod said to produce free-swimming veligers as well as brooded juveniles

  • Species delimitation The 10 best partitions found by ASAP divided the c oxidase subunit I (COI) dataset into 2 to 56 hypothetical species; no partition included all specimens in a single species

  • The best ASAP partition divided the dataset into four Primary Species Hypotheses (PSHs), corresponding to Clades I, IIa, IIb+IIc, and III (Figs. 2, 3, and Additional file 1: Fig. S1; Table 1; clade names correspond to those used by Wiggering et al.)

Read more

Summary

Introduction

Planaxis sulcatus has been touted as a textbook example of poecilogony, with members of this wideranging Indo-Pacific marine gastropod said to produce free-swimming veligers as well as brooded juveniles. In shelled Gastropoda, as a consequence of the accretionary growth of the shell, the protoconch—or larval shell, very frequently retained at the apex of the adult shell—reflects the mode of development; a so-called multispiral protoconch is indicative of planktotrophic larval development, and a so-called paucispiral protoconch is indicative of non-planktotrophic larval development [3]. This extraordinary correlation can be traced in the fossil record [4], and gastropod protoconchs can be attributed to either a planktotrophic or a non-planktotrophic mode of development already in Palaeozoic fossils. The protoconch has been used as a species-specific character, with many examples of species pairs diverging in inferred development type, and developmental shifts suggested to represent a major driver of speciation (see e.g. [5])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call