Abstract

Thermal contact has always been a hot issue in many engineering fields and thermal contact resistance (TCR) is one of the important indicators weighing the heat transfer efficiency among the interfaces. In this paper, the contact heat transfer of conforming rough surfaces is theoretically re-estimated considering both the heat transfer from contact and non-contact regions. The fluctuational electrodynamics (an ab initio calculation) is adopted to calculate the thermal radiation. The contribution of the contact regions is estimated by the CMY TCR model and further studied by modelling specific surfaces with the corresponding surface roughness power spectrum. Several tests are presented where aluminum and amorphous alumina are mainly used in the simulations. Studies showed that there exists a significant synergy between the thermal conduction and near-field thermal radiation at the interface within a certain range of the effective roughness. When the effective roughness is near to the scales of submicron, the near-field thermal radiation effect should not be neglected even at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.