Abstract

A Reusable Launch Vehicle (RLV), during the re-entry phase of its flight, experiences uncertain environment and extreme turbulence. This calls for an effective control strategy to guide the vehicle efficiently on a trajectory that allows safer landing conditions while providing robustness against external disturbances and system uncertainties. In this regard, a Time-Delayed Control (TDC) strategy has been proposed to track the space vehicle on a predetermined trajectory in the presence of these uncertainties. In the proposed approach, the system vector and the uncertainties are lumped into a single function which is estimated using the input and output data from the previous instant. Theoretical analysis of the control strategy executed using Lyapunov’s method, proves Uniformly Ultimately Bounded (UUB) stability of the closed loop system. The efficacy of the proposed approach has been verified through simulation studies which affirm robust tracking of the optimal trajectory generated through Pseudo-Spectral method (PSM), in the presence of time-varying uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call