Abstract

We discuss here the steady planar flow of the upper convected Maxwell fluid at re-entrant corners in the singular limits of small and large Weissenberg number. The Weissenberg number is a parameter representing the dimensionless relaxation time and hence the elasticity of the fluid. Its value determines the strength of the fluid memory and thus the influence of elastic effects over viscosity. The small Weissenberg limit is that in which the elastic effects are small and the fluid's memory is weak. It is an extremely singular limit in which the behaviour of a Newtonian fluid is obtained in a main core region away from the corner and walls. Elastic effects are confined to boundary layers at the walls and core regions nearer to the corner. The actual asymptotic structure comprises a complicated four-region structure. The other limit of interest is the large Weissenberg limit (or high Weissenberg number problem) in which the elastic effects now dominate in the main regions of the flow. We explain how the transition in solution from Weissenberg order 1 flows to high Weissenberg flows is achieved, with the singularity in the stress field at the corner remaining the same but its effects now extending over larger length-scales. Implicit in this analysis is the absence of a lip vortex. We also show (for the main core region) that there is a small reduction in the velocity field at the corner and walls where it becomes smoother. This high Weissenberg number limit has a six-region local asymptotic structure and comment is made on its relevance to the case in which a lip vortex is present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call