Abstract
Addition of a cationic surfactant to a solution of DNA causes the formation of compacted DNA-cationic surfactant complexes which precipitate from aqueous solution. It has been shown previously that addition of anionic surfactant will re-dissolve and de-compact the DNA-cationic surfactant complexes and we find that addition of non-ionic surfactants of the alkylpolyoxyethylene type can be used similarly. In principle, these de-compaction and re-dissolution processes could occur either by stripping of the cationic surfactant from the DNA into mixed micelles with the non-ionic surfactant or by solubilisation of the DNA-cationic surfactant complexes within the non-ionic micelles. Solubility phase-boundary measurements, fluorescence microscopy observations of the de-compaction process and light scattering results indicate that de-compaction and re-dissolution occur by the stripping mechanism, even for non-ionic surfactants where the favourable attractive electrostatic interaction between the two surfactants is absent. Using measurements of critical micelle concentrations and calculations based on regular solution mixed micelle theory, we show that re-dissolution and de-compaction of the DNA-cationic surfactant complexes occurs when the concentration of free monomeric cationic surfactant is reduced (by incorporation into mixed micelles) below a critical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.