Abstract

Flexible fibers and textiles featuring photothermal conversion and storage capacities are ideal platforms for solar-energy utilization and wearable thermal management. Other than using fossil-fuel-based synthetic fibers, re-designing natural fibers with nanotechnology is a sustainable but challenging option. Herein, advanced core-shell structure fibers based on plant-based nanocelluloses are obtained using a facile co-axial wet-spinning process, which has superior photothermal and thermal-regulating performances. Besides serving as the continuous matrix, nanocelluloses also have two other important roles: dispersing agent when exfoliating molybdenum disulfide (MoS2), and stabilizer for phase change materials (PCM) in the form of Pickering emulsion. Consequently, the shell layer contains well-oriented nanocelluloses and MoS2, and the core layer contains a high content of PCM in a leak-proof encapsulated manner. Such a hierarchical cellulosic supportive structure leads to high mechanical strength (139MPa), favorable flexibility, and large latent heat (92.0Jg-1), surpassing most previous studies. Furthermore, the corresponding woven cloth demonstrates satisfactory thermal-regulating performance, high solar-thermal conversion and storage efficiency (78.4-84.3%), and excellent long-term performance. In all, this work paves a new way to build advanced structures by assembling nanoparticles and polymers for functional composite fibers in advanced solar-energy-related applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call