Abstract

ABSTRACTWe present the results of our systematic investigation of the RE dependency of superconductivity in the parent compounds T’-RE2CuO4 (RE = Pr, Nd, Sm, Eu, Gd, and Tb). Superconducting samples were prepared by metal organic decomposition (MOD). A stringent control of synthesis- and post-annealing-conditions is required to obtain superconducting samples. Superconductivity with a transition temperature (Tconset) ≥ 30 K is achieved for RE = Pr and Nd. By contrast, Tconset is at highest 20 K for RE = Gd. Our results indicate that the induction of superconductivity into T’-RE2CuO4 cuprates strongly depends on the RE3+ ionic size. This trend is discussed from the viewpoint of RE-dependent thermodynamic stability of T’-RE2CuO4. For smaller RE3+ ions, the thermodynamic boundary conditions become tighter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.