Abstract
This paper proposes a novel hardware architecture for a Feed-Forward Neural Network (FFNN) with the objective of minimizing the number of execution clock cycles needed for the network’s computation. The proposed architecture depends mainly on using two physical layers that are multiplexed and reused during the computation of the FFNN to achieve an efficient parallel design. Two physical layers are designed to handle the computation of different sizes of Neural Networks (NN). The proposed FFNN architecture hardware resources are independent of the NN’s number of layers, instead, they depend only on the number of neurons in the largest layer. This versatile architecture serves as an accelerator in Deep Neural Network (DNN) computations as it exploits parallelism by making the two physical layers work in parallel through the computations. The proposed implementation was implemented with 18-bit fixed point representation reaching 200 MHz clock speed on a Spartan7 FPGA. Furthermore, the proposed architecture achieves a lower neuron computation factor compared to previous works in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.