Abstract

This paper introduces a novel technique for multi-level temperature measurement using a single reconfigurable ultrasonic wire waveguide that is configured in the form of a helical spring. In this embodiment, the multiple sensing levels located along the length of the helical waveguide wire can be repositioned by stretching or collapsing the spring to provide measurements at different desired spacing in a given area/volume. This method can measure over a wide range of temperatures. The transduction is performed using Piezo-electric crystals that are attached to one end of the waveguide which act as transmitter as well as receiver. The wire will have multiple reflector embodiments (notches was used here) that allow reflections of input L(0,1) mode guided ultrasonic wave, in pulse echo mode, back to the crystal. Using the time of fight measurement at multiple predefined reflector locations, the local average temperatures are measured and compared with co-located thermocouples. The finite element modeling simulation was used to study the effect of excitation frequency and the mean coil diameter of the “spring-like” waveguide. This technique improves on the limitations of a straight waveguide technique earlier reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.