Abstract
Several tools have been developed for calling variants from next-generation sequencing (NGS) data. Although they are generally accurate and reliable, most of them have room for improvement, especially regarding calling variants in datasets with low read depth. In addition, the somatic variants predicted by several somatic variant callers tend to have very low concordance rates. In this study, we developed a new method (RDscan) for improving germline and somatic variant calling in NGS data. RDscan removes misaligned reads, repositions reads, and calculates RDscore based on the read depth distribution. With RDscore, RDscan improves the precision of variant callers by removing false-positive variant calls. When we tested our new tool using the latest variant calling algorithms and data from the 1000 Genomes Project and Illumina's public datasets, accuracy was improved for most of the algorithms. After screening variants with RDscan, calling accuracies increased for germline variants in 11 of 12 cases and for somatic variants in 21 of 24 cases. RDscan is simple to use and can effectively remove false-positive variants while maintaining a low computation load. Therefore, RDscan, along with existing variant callers, should contribute to improvements in genome analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of computational biology : a journal of computational molecular cell biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.