Abstract

Retinal degeneration slow (RDS) is a photoreceptor specific tetraspanin membrane protein. It is expressed in the rim region of rod outer segment (OS) discs and cone OS lamellae. Mutations in RDS cause both rod and cone-dominant retinal degenerations. We have recently shown that RDS functions differently in rods vs. cones, and have used the cone-dominant nrl ( -/- ) and rod-dominant wild-type (WT) murine retinas to study these differences and help understand the mechanism of rod and cone OS biogenesis. We hypothesize that the differential role of RDS in rods vs. cones is in part related to differences in RDS binding partners. RDS has been shown to bind to the GARP portion of the beta subunit of the rod-cyclic nucleotide gated (CNG) channel. This interaction has been hypothesized to play a role in anchoring the disc rim to the rod plasma membrane. In this study we show that RDS does not interact with the cone CNG. Given that cone lamellae are not entirely encased in plasma membrane and therefore may have different anchoring requirements compared with rods, this observation may help explain some of the differential behavior of RDS in rods vs. cones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.