Abstract

Protein-ligand docking is of great importance to drug design, since it can predict the binding affinity between ligand and protein, and guide the synthesis direction of the lead compounds. Over the past few decades, various docking programs have been developed, some of them employing novel optimization algorithms. However, most of those methods cannot simultaneously achieve both good efficiency and accuracy. Therefore, it is worthwhile to pour the efforts into the development of a docking program with fast speed and high quality of the solutions obtained. The research presented in this paper, based on the docking scheme of Vina, developed a novel docking program called RDPSOVina. The RDPSOVina employes a novel search algorithm but the same scoring function of Vina. It utilizes the random drift particle swarm optimization (RDPSO) algorithm as the global search algorithm, implements the local search with small probability, and applies Markov chain mutation to the particles' personal best positions in order to harvest more potential-candidates. To prove the outstanding docking performance in RDPSOVina, we performed the re-docking experiments on two PDBbind datasets andcross-docking experiments on the Sutherland-crossdock-set, respectively. The RDPSOVina exhibited superior protein-ligand docking accuracy and better cross-docking prediction with higher operation efficiency than most of the compared methods. It is available at https://github.com/li-jin-xing/RDPSOVina .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.