Abstract

High efficiency video coding (HEVC) has been finalized as the most widely utilized video coding standard, jointly developed by ITU-T, VCEG, and MPEG. In HEVC, the quad-tree structure of the coding unit partition is one of the most substantial modules and provides significant coding gains following huge coding time. In this paper, a rate–distortion-based coding unit partition network (RDNet) is proposed to make partition decisions based on the statistical features. RDNet is composed of a prediction sub-network and a target sub-network, where the prediction sub-network is used to predict the CU partition modes of the intra-prediction and the target sub-network is designed to optimize the network parameters by evaluating the rate–distortion cost, respectively. To balance the prediction accuracy and the rate–distortion loss, a parameter-exchanging strategy is applied to control the parameters’ sharing between two networks. Experimental results prove that our model can reduce the encoding time of HEVC by 55.83~71.72% with an efficient BD-BR of 2.876~3.347%, and the ablation study evaluates the ability of our strategy on balancing the trade-off between coding accuracy and inference speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call