Abstract

Nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase induce nucleophagy preferentially degrading only nucleolar components in budding yeast. Nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA, which is embedded in the nucleolus under normal conditions, moves to NVJ-distal regions, causing rDNA dissociation from nucleolar proteins after TORC1 inactivation. This repositioning ismediated via chromosome linkage INM protein (CLIP)-cohibin complexes that tether rDNA to the inner nuclear membrane. Here, we show that TORC1 inactivation-induced rDNA condensation promotes the repositioning of rDNA and nucleolar proteins. Defects in condensin, Rpd3-Sin3 histone deacetylase (HDAC), and high-mobility group protein 1 (Hmo1), which are involved in TORC1 inactivation-induced rDNA condensation, compromised the repositioning and nucleophagic degradation of nucleolar proteins, although rDNA still escaped from nucleophagic degradation in these mutants. We propose a model in which rDNA condensation after TORC1 inactivation generates a motive force for the repositioning of rDNA and nucleolar proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.