Abstract

BackgroundAnopheles sinensis is a major vector of malaria in China. The gamma-aminobutyric acid (GABA)-gated chloride channel, encoded by the RDL (Resistant to dieldrin) gene, is the important target for insecticides of widely varied structures. The use of various insecticides in agriculture and vector control has inevitably led to the development of insecticide resistance, which may reduce the control effectiveness. Therefore, it is important to investigate the presence and distribution frequency of the resistance related mutation(s) in An. sinensis RDL to predict resistance to both the withdrawn cyclodienes (e.g. dieldrin) and currently used insecticides, such as fipronil.MethodsTwo hundred and forty adults of An. sinensis collected from nine locations across Guangxi Zhuang Autonomous Region were used. Two fragments of An. sinensis RDL (AsRDL) gene, covering the putative insecticide resistance related sites, were sequenced respectively. The haplotypes of each individual were reconstructed by the PHASE2.1 software, and confirmed by clone sequencing. The phylogenetic tree was built using maximum-likelihood and Bayesian inference methods. Genealogical relations among different haplotypes were also analysed using Network 5.0.ResultsThe coding region of AsRDL gene was 1674 bp long, encoding a protein of 557 amino acids. AsRDL had 98.0% amino acid identity to that from Anopheles funestus, and shared common structural features of Cys-loop ligand-gated ion channels. Three resistance-related amino acid substitutions (A296S, V327I and T345S) were detected in all the nine populations of An. sinensis in Guangxi, with the 296S mutation being the most abundant (77–100%), followed by 345S (22–47%) and 327I (8–60%). 38 AsRDL haplotypes were identified from 240 individuals at frequencies ranging from 0.2 to 34.8%. Genealogical analysis suggested multiple origins of the 345S mutation in AsRDL.ConclusionsThe near fixation of the 296S mutation and the occurrence of the 327I and 345S mutations in addition to 296S, in all the nine tested An. sinensis populations in Guangxi, strongly indicate a risk of multiple insecticide resistance. The haplotype diversity plus genetic heterogeneities in the geographical distribution, and multiple origins of AsRDL alleles call for a location-customized strategy for monitoring and management of insecticide resistance.

Highlights

  • Anopheles sinensis is a major vector of malaria in China

  • The distribution and frequency of insecticide resistance-conferring mutations in the acetylcholinesterase and voltage gated sodium channel were determined in An. sinensis collected extensively across Guangxi Zhuang Autonomous Region (Guangxi) in previous studies [11, 12], other questions related to insecticide resistance remain to be answered

  • The full length open reading frame sequence of the gamma-aminobutyric acid (GABA)-gated chloride channel gene was amplified by PCR using the primers (AsRDLf ullcd - F : ATG TC G C TA A C C ATC GAAGT TC C G C ; AsRDLfullcd-R: TTACTTATCCTCACCGAGCAGCA) commercially synthesized by Invitrogen (China)

Read more

Summary

Introduction

Anopheles sinensis is a major vector of malaria in China. The gamma-aminobutyric acid (GABA)-gated chloride channel, encoded by the RDL (Resistant to dieldrin) gene, is the important target for insecticides of widely varied structures. The use of various insecticides in agriculture and vector control has inevitably led to the development of insecticide resistance, which may reduce the control effectiveness. It is important to investigate the presence and distribution frequency of the resistance related mutation(s) in An. sinensis RDL to predict resistance to both the withdrawn cyclodienes (e.g. dieldrin) and currently used insecticides, such as fipronil. The use of insecticides in the control of An. sinensis itself, and in agriculture, has inevitably led to increasing insecticide resistance in Chinese An. sinensis [8,9,10]. The distribution and frequency of insecticide resistance-conferring mutations in the acetylcholinesterase and voltage gated sodium channel were determined in An. sinensis collected extensively across Guangxi in previous studies [11, 12], other questions related to insecticide resistance remain to be answered

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call