Abstract
The vision of the semantic Web has brought about new challenges at the intersection of Web research and data management. One fundamental research issue at this intersection is the storage of the resource description framework (RDF) data: the model at the core of the semantic Web. We present a data-centric approach for storage of RDF in relational databases. The intuition behind our approach is that each RDF dataset requires a tailored table schema that achieves efficient query processing by (1) reducing the need for joins in the query plan and (2) keeping null storage below a given threshold. Using a basic structure derived from the RDF data, we propose a two-phase algorithm involving clustering and partitioning. The clustering phase aims to reduce the need for joins in a query. The partitioning phase aims to optimize storage of extra (i.e., null) data in the underlying relational database. Our approach does not assume a particular query workload, relevant for RDF knowledge bases with a large number of ad-hoc queries. Extensive experimental evidence using three publicly available real-world RDF data sets (i.e., DBLP, DBPedia, and Uniprot) shows that our schema creation technique provides superior query processing performance compared to state-of-the art storage approaches. Further, our approach is easily implemented, and complements existing RDF-specific databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.