Abstract
A composite-laminate formed by thick layers (~ 320 µm) of zirconia-toughened alumina (ZTA) with thin (~ 50 µm) interlayers of zirconia partially stabilized (Y-PSZ) has been fabricated by tape casting and pressureless sintering. Fracture behavior and strength has been investigated and compared to a “monolithic” reference, e.g. a stack of zirconia-toughened alumina (ZTA) without interlayers. The fracture behavior has been analysed using stable crack growth in V-notched specimens loaded in 3-point bending. The ZTA+Y-PSZ composite laminate presented a rising crack resistance with maximum values between 6 and 14 MPa m1/2. In contrast, the “monolithic” ZTA laminate shows a plateau R-curve behavior at 2.7 MPa m1/2. Several toughening mechanisms were identified in the ZTA+Y-PSZ composite laminate, such as, crack arrest/slow down, micro cracking and bifurcation. These toughening mechanisms are most likely caused by high tensile residual stresses that were estimated theoretically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.