Abstract
Stress testing, an essential part of the risk management toolkit of financial institutions, refers to the evaluation of a portfolio’s potential risk under an extreme, but plausible, scenario. The most representative method for performing stress testing is historical scenario simulation, which aims to evaluate historical adverse market events on the current portfolios of financial institutions. However, some current commodities were not listed in the commodity futures market at the time of the historical event, causing a lack of the necessary price information to revalue the current positions of these commodities. To avoid over reliance on human hypothesis for these non-existent commodity futures, we propose a novel approach, RCML, to infer reasonable price movements for commodities unlisted in historical events. Unlike the previous methods, based on subjective hypothesis, RCML takes advantage of not only machine learning algorithms, but also multi-view information. Back testing and hypothesis testing are adopted to prove the rationality of RCML results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.