Abstract

We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in flat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic field pulse can trigger the magnetic domain wall motion, where all the field torques are kept on the plane of nanowire strip. The speed of magnetic domain walls faster than several hundreds of meters per second is predicted without the Walker breakdown for the perpendicular magnetic driving field stronger than 200 mT. Interestingly, the dynamic behavior of the moving magnetic domain wall driven by perpendicular magnetic field pulses is explained by charging- and discharging-like behaviors of an electrical RC-circuit model, where the charging and the discharging of magnetic charges on the nanowire planes are considered. The concept of the RC-model-like dynamic characteristic of the magnetic domain wall might be promising for the applications in spintronic functional devices based on the magnetic domain wall motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.