Abstract
ATR is a master regulator of cell response to replication stress. Adequate activation of ATR is essential for preventing genome aberrance induced by replication defect. However, the mechanism underlying ATR activation is not fully understood. Here, we identify that RBMX is an ssDNA binding protein that orchestrates a novel pathway to activate ATR. Using super-resolution STORM, we observe that RBMX and RPA bind to adjacent but nonoverlapping sites on ssDNA in response to replication stress. RBMX thenbinds to and facilitates positioning of TopBP1, which activates nearby ATR associated with RPA. In addition, ATR activation by ssDNA-RBMX-TopBP1 is independent of ssDNA-dsDNA junction and 9-1-1 complex. ChIP-seq analysis reveals that RBMX/RPA are highly enriched on repetitive DNAs, which are considered as fragile sites with high replication stress. RBMX depletion leads to defective localization of TopBP1 to replication stressed sites and inadequate activation of ATR. Furthermore, cells with deficient RBMX demonstrate replication defect, leading to formation of micronuclei and a high rate of sister-chromatin exchange, indicative of genome instability. Together, the results identify a new ssDNA-RBMX-TopBP1 pathway that is specifically required for activation of ATR on repetitive DNAs. Therefore, RBMX is a key factor to ensure genome stability during replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.