Abstract
Bone tissue defects caused by disease, trauma, aging or genetic factors emerged as one of the main factors that endanger human health. At present, advanced development of bone tissue engineering and regenerative medicine focused on the biomaterials regulated stem cell for responsive differentiation. In vivo transplantation of allogeneic bone materials has the needs of both osteogenic and immune regulation function. In this study, we utilized the extensively proved biocompatible layered double hydroxide (LDH) nanoparticles as the nanocarrier of graphene quantum dots (GQD), the functional loading was validated by characteristics analysis of scanning electron microscopy, surface zeta potential, X-ray diffraction and fourier transform infrared spectroscopy. Further, we investigated the cellular uptake of nanoparticles in rat bone marrow derived mesenchymal stem cells, the significant enhanced endocytosis was occurred in LDH-GQD treated groups. The enhanced osteogenic differentiation abilities of LDH-GQD were systematically investigated through alkaline phosphatase staining, alizarin red staining and qPCR analysis. In addition, the anti-inflammatory regulation of LDH facilitated the phenotypic transition of macrophage in LDH-GQD nanocomposites. Overall, the successful construction and functional validation of nanomaterials in this study will provide clinical therapeutic potential in bone defects regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.