Abstract

Alternative splicing (AS) of pre-mRNAs is one of the most important post-transcriptional regulations that enable a single gene to code for multiple proteins resulting in the biodiversity of proteins in eukaryotes. Recently, we have shown that an Arabidopsis thaliana RNA recognition motif-containing protein RBM25 is a novel splicing factor to modulate plant response to ABA during seed germination and post-germination through regulating HAB1 pre-mRNA AS. Here, we show that RBM25 is preferentially expressed in stomata and vascular tissues in Arabidopsis and is induced by ABA and abiotic stresses. Loss-of-function mutant is highly tolerant to drought and sensitive to salt stress. Bioinformatic analysis and expression assays reveal that Arabidopsis RBM25 is induced by multiple abiotic stresses, suggesting a crucial role of RBM25 in Arabidopsis responses to adverse environmental conditions. Furthermore, we provide a comprehensive characterization of the homologous genes of Arabidopsis RBM25 based on the latest plant genome sequences and public microarray databases. Fourteen homologous genes are identified in different plant species which show similar structure in gene and protein. Notably, the promoter analysis reveals that RBM25 homologs are likely controlled by the regulators involved in multiple plant growth and abiotic stresses, such as drought and unfavorable temperature. The comparative analysis of general and unique cis regulatory elements of the RBM25 homologs highlights the conserved and unique molecular processes that modulate plant response to abiotic stresses through RBM25-mediated alternative splicing.

Highlights

  • As plants are essentially sessile in nature, they have to face various environmental stresses during life time

  • To investigate whether RBM25 plays a conserved role in plants, we used Arabidopsis RBM25 as a query to against the genome and PGDD website to analyze the data collected from the Phytozome website1 and we found 14 homologous genes of Arabidopsis RBM25 including those from major crops, e.g., soybean, rice, maize, edible rape, and so on

  • We compared the promoters of soybean RBM25 homologs with Arabidopsis RBM25 promoter as an example. We found that both promoters of soybean RBM25 homologous genes contain cis regulatory elements related to auxin, gibberellin acid (GA), MeJA, ABA and the motifs involved in plant responses to drought and temperatures (Figure 9), which is similar to that of the promoter of Arabidopsis

Read more

Summary

Introduction

As plants are essentially sessile in nature, they have to face various environmental stresses during life time. Global warming increases the frequency and severity of extreme weather that exacerbate the effects of abiotic stresses (i.e., drought, cold, and heat stresses) on plants. To deal with these challenges, plants have evolved numerous adaptive strategies at physiological, biochemical and molecular levels in order to survive better (Broun, 2004; Bohnert et al, 2006). Plant stress responses are regulated by numerous gene regulatory networks at multiple levels. The extensive efforts have been made to understand how plants respond to abiotic stresses at transcriptional level. How plants respond to abiotic stresses at post-transcriptional level is less clear

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call