Abstract

The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating β-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call