Abstract
In general, the online computation burden of robust model predictive control (RMPC) is very heavy, and the mechanical model of a plant, which is used in RMPC, is hard to obtain precisely in real industry. These issues may largely restrict the applicability of RMPC in real applications. This paper proposes a RBF-ARX (state-dependent Auto-Regressive model with eXogenous input and Radial Basis Function network type coefficients) model-based efficient robust predictive control (RBF-ARX-ERPC) approach to an inverted pendulum system, which is a complete and systematic method for designing robust MPC controller because it integrates the RBF-ARX modeling method and a fast RMPC approach. First, based on the offline identified RBF-ARX model without offset term, two convex polytopic sets are constructed to wrap the globally nonlinear behavior of the system. Then, the optimization problem of implementing a quasi-min–max MPC algorithm including several linear matrix inequalities (LMIs) is formulated, and it is solved offline to synthesize a sequence of explicit control laws that correspond to a sequence of asymptotically stable invariant ellipsoids, of which all the optimization results are stored in a look-up table. During the online real-time control, the controller only needs to carry out a simple state-vector computation and bisection search. The proposed approach is applied to an actual linear one-stage inverted pendulum (LOSIP), which is a fast-responding and nonlinear plant. The real-time control experiments demonstrate the effectiveness of the proposed RBF-ARX model-based efficient RMPC approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.