Abstract
An antilock braking (ABS) scheme control is a relatively difficult task due to its uncertain nonlinear dynamics. According to the requirement that the braking process must be fast and robust, we contribute to extending the universal function approximation property of the radial-basis-function (RBF) neural network (NN) to design both: (a) adaptive NN observer to estimate the tracking error dynamics; and (b) intelligent NN output feedback controller (OFC) that will overcome successfully the existing high uncertainties. Notice that the OFC is introduced to linearise the ABS nonlinear system, and the dynamic compensator is involved to stabilise the linearised system. The estimated states are used in the adaptation laws as an error signal. Simulations of the proposed control algorithm based adaptive RBFNN observer are conducted then compared to the Bang-bang controller to demonstrate its practical potential. Furthermore, its efficiency has been successfully confirmed through a robustness test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modelling, Identification and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.