Abstract

The existing moving mass control system of a nonspinning reentry warhead could not drive the system error to reach zero in finite time. In order to settle the finite time reach issue, an RBF neural network-based terminal sliding mode controller was presented to design the moving mass control system. It used a terminal sliding mode to ensure that the error reaches zero in finite time. The disturbance and coupled terms of the warhead were treated as uncertainties. An RBF neural network was used to estimate the uncertainties. A nonspinning warhead was taken in the simulation to test the performance of the presented controller. The simulation results show the presented controller has faster tracking speed and higher tracking precision than the former research result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.