Abstract

There are usually larger uncertainties in the atmosphere density of Mars and the aerodynamic parameters of entry vehicles, which inevitably degrades the performance of entry guidance and control algorithms. This paper studies the robust Mars atmospheric entry guidance design based on the radial basis function neural network (RBF-NN) and second-order sliding mode control (SOSMC). First, second-order sliding mode guidance (SOSMG) law is developed to robustly follow the pre-designed nominal trajectory under larger uncertainties and effectively reduce the longitudinal error. Then, the RBF neural network is included into the second-order sliding surface guidance law to online approximate the bounded uncertain terms and further improve the guidance accuracy. Finally, the effectiveness of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.