Abstract
Aiming at problems such as: surface interpolation reconstruction of points cloud data,surface hole filling and two simple surface connection, a neural network arithmetic was employed. Based on radial basis function neural network, simulated annealing was employed to adjust the network weights. The new arithmetic can approach any nonlinear function by arbitrary precision, and also keep the network from getting into local minimum for global optimization feature of simulated annealing. MATLAB program was compiled, experiments on points cloud data have been done employing this arithmetic, the result shows that this arithmetic can efficiently approach the surface with 10-4 mm error precision, and also the learning speed is quick and reconstruction surface is smooth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.