Abstract

In this work, a numerical scheme is constructed for solving nonlinear parabolictype partial-integro differential equations. The proposed numerical scheme is based on radial basis functions which are local in nature like finite difference numerical schemes. The radial basis functions are used to approximate the derivatives involved and the integral is approximated by equal width integration rule. The resultant differentiation matrices are sparse in nature. After spatial approximation using RBF the partial integro-differential equations reduce to the system of ODEs. Then ODEs system can be solved by various types of ODE solvers. The proposed numerical scheme is tested and compared with other methods available in literature for different test problems. The stability and convergence of the present numerical scheme are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.