Abstract

This paper presents a novel approach for Human Face Recognition, namely Regularized Bi-partitioned Entropy Component Analysis (RBECA). This conservative approach regularizes the kernel entropy components by deterring the noise and affecting the lower entropy regions area, making the method robust to noise. The kernel feature space, formed by the kernel entropy component analysis (KECA), is divided into two partitions: the High Entropy Space (HES) and the Low Entropy Space (LES). The noise-laden low entropy spectrum is regularized by predicting entropy values obtained from the information-filled High Entropy Spectrum. The corresponding projection vectors are adjusted accordingly. A null space, comprising the negligible information and many dimensions, is eliminated using a Golden Search minimization function at two stages. The method retains the maximum entropy property and high recognition accuracy while using the optimum number of features. This resultant feature vector is classified using the cosine similarity measure. The algorithm is successfully tested on several benchmark databases like AR, FERET, FRAV2D, and LFW, using standard protocols and compared with other competitive methods. The proposed method achieves much better recognition accuracy than other well-known methods like PCA, ICA, KPCA, KECA, LGBP, ERE, etc., in all considered cases. Moreover, we have also proposed a CNN for the comparative analysis. For unbiased or fair performance evaluation, the sensitivity and specificity are also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.