Abstract

Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This study explored whether increased red blood cell (RBC) swelling and/or plasma or urine amino acid concentrations after hypo-osmotic challenge might be informative about relative chronic hyperosmotic stress in free-living men. Five healthy men (20–25 years) with baseline total water intake below 2 L/day participated in an 8-week clinical study: four 2-week periods in a U-shaped A-B-C-A design. Intake of drinking water was increased by +0.8 ± 0.3 L/day in period 2, and +1.5 ± 0.3 L/day in period 3, and returned to baseline intake (0.4 ± 0.2 L/day) in period 4. Each week, fasting blood and urine were collected after a 750 mL bolus of drinking water, following overnight water restriction. The periods of higher water intake were associated with significant decreases in RBC deformability (index of cell swelling), plasma histidine, urine arginine, and urine glutamic acid. After 4 weeks of higher water intake, four out of five participants had ½ maximal RBC deformability below 400 mmol/kg; plasma histidine below 100 μmol/L; and/or undetectable urine arginine and urine glutamic acid concentrations. Work is warranted to pursue RBC deformability and amino acid concentrations after hypo-osmotic challenge as possible biomarkers of chronic cell hydration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call