Abstract
Cellular totipotency is critical for whole-organism generation, yet how totipotency is established remains poorly illustrated. Abundant transposable elements (TEs) are activated in totipotent cells, which is critical for embryonic totipotency. Here, we show that the histone chaperone RBBP4, but not its homolog RBBP7, is indispensable for maintaining the identity of mouse embryonic stem cells (mESCs). Auxin-induced degradation of RBBP4, but not RBBP7, reprograms mESCs to the totipotent 2C-like cells. Also, loss of RBBP4 enhances transition from mESCs to trophoblast cells. Mechanistically, RBBP4 binds to the endogenous retroviruses (ERVs) and functions as an upstream regulator by recruiting G9a to deposit H3K9me2 on ERVL elements, and recruiting KAP1 to deposit H3K9me3 on ERV1/ERVK elements, respectively. Moreover, RBBP4 facilitates the maintenance of nucleosome occupancy at the ERVK and ERVL sites within heterochromatin regions through the chromatin remodeler CHD4. RBBP4 depletion leads to the loss of the heterochromatin marks and activation of TEs and 2C genes. Together, our findings illustrate that RBBP4 is required for heterochromatin assembly and is a critical barrier for inducing cell fate transition from pluripotency to totipotency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.