Abstract

Borates are favored by materials scientists and chemists because of the significant electronegativity difference between B and O atoms and their flexible assembly modes resulting in abundant structures and excellent properties. For the design of deep-ultraviolet (DUV) optical crystals with excellent macroscopic performance, it is crucial to choose appropriate cations and anionic groups and microscopically reasonable assembly patterns. Herein, by introducing covalent tetrahedra ([MO4], M = Mg, Al), two new mixed alkali metal and alkaline earth metal borates, Rb3MgB5O10 and LiBaAl(BO3)2, were synthesized using the melt method and high-temperature solution method. They contain M-B-O two-dimensional (2D) layers (2∞[MgB5O10] and 2∞[Al(BO3)2], respectively) composed of isolated B-O groups ([B5O10]5- and [BO3]3-, respectively) and metal-centered tetrahedral connectors ([MgO4]6- and [AlO4]5-, respectively). Combining experiments and theoretical calculations shows that the two compounds have short cutoff edges (<200 nm) and moderate birefringences. Further analysis manifests that the isolated [MO4] covalent tetrahedra can optimize the arrangement of anion groups, guarantee the balanced optical properties of materials, and point out the direction for further exploration of novel borate structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.