Abstract

AbstractThe Okenyenya igneous complex is one of a suite of intrusions which define a prominent northeast-trending linear feature in Damaraland, northwestern Namibia. Precise Rb–Sr internal isochron ages range from 128.6 ± 1 to 123.4 ± 1.4 Ma for the major phases of intrusion identified within the complex. The tholeiitic gabbros forming the outer rings of the complex, and the later alkali gabbros which form the central hills, cannot be distinguished in terms of Rb–Sr ages, although field relations clearly indicate the younger age of the latter. The intrusionsof nepheline-syenite and essexite comprising the mountain of Okenyenya Bergon the northern edge of the complex give ages of 123.4 ± 1.4 and 126.3 ± 1 Ma, respectively, and form the final major phase of intrusion. The ages obtained for early and late intrusive phases define a minimum magmatic ‘life-span’ of approximately 5 Ma for the complex. The determined age of the Okenyenya igneous complex (129–123 Ma), when taken together with the few reliable published ages for other Damaraland complexes (130–134 Ma), suggests that these sub-volcanic complexes were emplaced contemporaneously with the widespread Etendeka volcanics (˜ 130 Ma), and relate to magmatism associated with the breakup of southern Africa and South America with the opening of the South Atlantic Ocean. The linear distributionof intrusions in Damaraland is interpreted to be due to magmatism resultingfrom the upwelling Tristan plume being focused along a structural discontinuity between the Pan-African, Damaran terrain to the south, and Proterozoiccratonic basement to the north.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call