Abstract

Although it is unclear which cellular factor(s) is responsible for the genetic instability associated with initiating and sustaining cell transformation, it is known that many cancers have mutations that inactivate the Rb-mediated proliferation pathway. We show here that pRb inactivation and the resultant deregulation of one E2F family member, E2F1, leads to DNA double-strand break (DSB) accumulation in normal diploid human cells. These DSBs occur independent of Atm, p53, caspases, reactive oxygen species, and apoptosis. Moreover, E2F1 does not contribute to c-Myc-associated DSBs, indicating that the DSBs associated with these oncoproteins arise through distinct pathways. We also find E2F1-associated DSBs in an Rb mutated cancer cell line in the absence of an exogenous DSB stimulus. These basal, E2F1-associated DSBs are not observed in a p16(ink4a) inactivated cancer cell line that retains functional pRb, unless pRb is depleted. Thus, Rb status is key to regulating both the proliferation promoting functions associated with E2F and for preventing DNA damage accumulation if E2F1 becomes deregulated. Taken together, these data suggest that loss of Rb creates strong selective pressure, via DSB accumulation, for inactivating p53 mutations and that E2F1 contributes to the genetic instability associated with transformation and tumorigenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.