Abstract
The pRb family proteins (pRb1/105, p107, pRb2/p130), collectively referred to as pocket proteins, are believed to function primarily as regulators of the mammalian cell cycle progression, and suppressors of cellular growth and proliferation. In addition, different studies suggest that these pocket proteins are also involved in development and differentiation of various tissues. Several lines of evidence indicate that generally pRb-family proteins function through their effect on the transcription of E2F-regulated genes. In fact, each of Rb family proteins binds to distinct members of the E2F transcription factors, which regulate the expression of genes whose protein products are necessary for cell proliferation and to drive cell-cycle progression. Nevertheless, pocket proteins can affect the G1/S transition through E2F-independent mechanisms. More recently, a broad range of evidences indicate that pRb-family proteins associate with a wide variety of transcription factors and chromatin remodeling enzymes forming transcriptional repressor complexes that control gene expression. This review focuses on the complex regulatory mechanisms by which pRb-family proteins tell genes when to switch on and off.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.