Abstract

Domain decomposition methods are used for the approximate solution of boundary value problems for partial differential equations on parallel computing systems. The specifics of nonstationary problems is most completely taken into account when using noniterative domain decomposition schemes. Regionally additive schemes are constructed on the basis of various classes of splitting schemes. A new class of domain decomposition schemes with an additive representation of the solution on a new time level is distinguished that is based on splitting the domain into subdomains based on a partition of unity. An example of the Cauchy problem for first-order evolution equations with a positive self-adjoint operator in a finite-dimensional Hilbert space is considered. Unconditionally stable two- and three-level splitting schemes are constructed for the corresponding system of equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.