Abstract

Abstract Rayleigh-Taylor instability at a gas-water interface has been investigated experimentally. Such instability was produced by accelerating a water column down a vertical circular tube employing shock wave impact. Accelerations from 50 to 100 times gravitational acceleration with fluid depths from 125 to 250 mm were studied. The resulting instability from small amplitude random perturbations was recorded and later analyzed using high-speed video images. Cavity formation was observed in the middle of the gas-water interface soon after the shock wave impact; bubbles and spikes then developed across the rest of the interfacial plane. Measurements of the growth coefficient of the bubbles and spikes show that they are nearly constant over different runs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.