Abstract
In the present work, we consider the linear hydrodynamic stability problems of viscoelastic fluids in arbitrary finite domains. The effects of domain shapes on the critical Rayleigh number and convection pattern are investigated by means of a linear stability analysis employing a Chebyshev pseudospectral method. It is shown that the domain shape can change the viscoelastic parameter values where the Hopf bifurcation occurs in the Rayleigh–Bénard convection. The results of the present investigation may be exploited to design shapes of convection box where the Hopf bifurcation occurs at realistic low values of Deborah number. This will enhance the usefulness of the natural convection system as a rheometry tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.