Abstract

The present investigation is devoted to the study of the propagation of Rayleigh waves in a homogeneous, transversely isotropic, thermoelastic diffusive half-space subjected to stress-free, thermally insulated and (or) isothermal, and chemical potential boundary conditions, in the context of the theory of coupled thermoelastic diffusion. Secular equations for surface-wave propagation in the media being considered are derived. The surface-particle paths during the motion are found to be elliptical, but degenerate into straight lines in case where there is no phase difference between the horizontal and vertical components of the surface displacements. The phase velocity; attenuation coefficient; specific loss of energy; and the amplitudes of surface displacements, temperature change, and concentration are computed numerically and presented graphically to depict the anisotropy and diffusion effects. Some special cases of frequency equations are also deduced from the present investigation. PACS Nos.: 62.20.–x, 62.20.D–, 62.20.de, 62.20.dj, 62.20.dq, 62.30.+d, 66.10.C–, 66.10.cd, 66.10.cg, 66.30.–h

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.