Abstract

A theoretical formulation to study the problem of scattering of Rayleigh waves due to the presence of a rigid plane strip in a deep ocean is presented. A rigid plane strip (0 ≤z ≤ H, 0 ≤x ≤ l) is fixed in the surface of the ocean occupyingz ≥ 0. Fourier transformation and Wiener-Hopf technique are used to arrive at the solution. The scattered Rayleigh waves behave as cylindrical waves emerging out of the corner of the strip and its image in the free surface of the ocean. The scattered waves are obtained in terms of Bessel functions whose behaviour near and far from the strip is well-known. The numerical calculations for the scattered waves show that their amplitude increases rapidly for a small increase in the value of the wave number. Scattering of Rayleigh waves due to a thin plane vertical barrier and a thin barrier in the free surface of the ocean has been considered as the special cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call