Abstract

The interfacial instability of Rayleigh–Taylor type at the cylindrical boundary involving the liquid phase and vapor phase of a fluid has been considered when the vapor is warmer than the liquid. We use viscous potential flow theory to include the viscosity at the interface. To examine the stability of the arrangement, the normal-mode analysis is performed together with the effect of heat as well as mass transfer and free swirl. The physical system consists of an annular fluid layer restricted in a cylinder with vapor phase in the core. This work investigates the effect of a variety of variables on the instability of the interface. It is found that when the heat transfer constant increases, the range of stability increases. Also, the range of stability increases faster in the presence of swirling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.