Abstract

The problem of Rayleigh-Taylor instability of superposed viscous magnetized fluids through porous medium is investigated in a partially-ionized medium. The fluid has ionized and neutralized particle components interacting with collisions. The effect of surface tension on R-T instability is also included in the present problem. The magnetohydrodynamic equations are modified for finite-Larmor radius corrections which is in the form of tensor. The equations of problem are linearized and using appropriate boundary condition, general dispersion relation is derived for two superposed fluids separated by horizontal boundary. The first part of the dispersion relation gives stable mode and condition is investigated using Hurwitz conditions. The second part of the dispersion relation shows that the growth rate of unstable system is reduced due to FLR corrections, viscosity, and collisional frequency of the neutrals. The role of surface tension on the system is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.