Abstract

We examine the role of ionizing radiation emitted from black holes (BHs) in suppressing the growth of the Rayleigh-Taylor instability (RTI) across the ionization front (I-front) that forms when the gas fueling the BH is neutral. We use radiation-hydrodynamic simulations to show that the RTI is suppressed for non-accelerating fronts on all scales resolved in our simulations. A necessary condition for the stability of the I-front is that the radius of the Str\"omgren sphere is larger than the Bondi radius. When this condition is violated the I-front collapses producing an accretion luminosity burst. Transient growth of the RTI occurs only during the accretion burst when the effective acceleration in the frame of reference of the I-front increases significantly due to the rapid expansion of the Str\"omgren sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.