Abstract
Direct-drive, planar-target Rayleigh-Taylor growth experiments were performed for the first time to test fundamental physics in hydrocodes at peak drive intensities of ignition designs. The unstable modulation growth at a drive intensity of approximately 1 x 10(15) W/cm2 was strongly stabilized compared to the growth at an intensity of approximately 5 x 10(14) W/cm2. The experiments demonstrate that standard simulations based on a local model of electron thermal transport break down at peak intensities of ignition designs (although they work well at lower intensities). The preheating effects by nonlocal electron transport and hot electrons were identified as some of the stabilizing mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.