Abstract

A new water channel experiment has been used to study turbulent mixing driven by buoyancy, and by combined buoyancy and shear. Density differences were produced by thermal stratification. The experiment was statistically steady, and a space–time transformation in the streamwise direction permitted a continuous study of the mixing evolution. Dye and digitized photographs were used to study the mixing process. An ensemble average of images gave the average mixing layer growth rate and the distribution of light and heavy fluid in the mixing layer. The structure of the early growth of buoyancy dominated mixing and of combined shear and buoyancy mixing is presented. The mixing transition from combined shear and buoyancy mixing to buoyancy dominated mixing occurred at Richardson numbers from −5 to −11. It was found that buoyancy dominated a self-similar mixing stage for the range of flows (ΔU=0 to 2 cm/s) and density differences (Δρ=0.38 to 2.4 kg/m3). Transition to self-similar mixing occurred at a Reynolds number from 670 to 1200. The self-similar mixing width for all tests had a quadratic growth rate with an average acceleration constant of 0.070 and a standard deviation of 0.011.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.