Abstract

The axial dependency of the central-axis value of the heavy particle density and temperature of surface-wave plasmas is studied using Rayleigh scattering (RyS). The plasma is generated at a frequency of 2.45 GHz in argon by a surfatron operating under the standard settings of a power of 45 W, a flow rate of 50 sccm and a pressure of 20 mbar. To investigate the effect of the pressure on the gas temperature, we also investigated 6 and 10 mbar plasmas. By using a two-dimensional intensified CCD array we could determine and eliminate the influence of false stray light, a major disturbing factor in the determination of the Rayleigh signal. In order to trace the energy fluxes that determine the gas temperature, we performed Thomson scattering so that the properties of the electron gas are known. It is found that the gas temperature, T a , depends on the wall temperature and the product of the gas pressure and the electron pressure. The latter implies that T a follows the electron density axially, meaning that it is highest at the launcher and decreases monotonically in the wave propagation direction. The maximum gas temperature of around T a = 800 K is found close to the launcher for the highest gas pressure of 20 mbar. For lower pressures we find lower T a values. The extrapolation of T a toward the end of the plasma column leads to a temperature of about 320 K. This study reveals that, for the argon plasmas under study, the central-axis values of the gas temperature are determined by the balance between the heating of the gas by means of elastic electron collisions and the cooling due to heat conduction from the center to the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.