Abstract
In this paper, a novel projection-based depth based on the Rayleigh quotient, Rayleigh projection depth (RPD), is proposed. Although, the traditional projection depth (PD) has many good properties, it is indeed not practical due to its difficult computation, especially for the high-dimensional data sets. Defined on the mean and variance of the data sets, the new depth, RPD, can be computed directly by solving a problem of generalized eigenvalue. Meanwhile, we extend the RPD as generalized RPD (GRPD) to make it suitable for the sparse samples with singular covariance matrix. Theoretical results show that RPD is also an ideal statistical depth, though it is less robust than PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.