Abstract

The present numerical study documents bifurcation sequences for Rayleigh-Be´nard convection in a rectangular enclosure with insulated sidewalls. The aspect ratios are 3.5 and 2.1 and the Boussinesq fluid is water (average temperature of 70°C) with a Prandtl number of 2.5. The transition to chaos observed in the simulations and experiments is similar to the period-doubling (Feigenbaum) route to chaos. However, special symmetry conditions must be imposed numerically, otherwise the route to chaos is different (Ruelle-Takens-Newhouse). In particular, the Feigenbaum route to chaos can be realized only if the oscillating velocity and temperature field preserves the fourfold symmetry that is observed in the mean flow in the horizontal plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.