Abstract

Ultra-narrow linewidth laser with several hundred hertz at room temperature has attracted a great deal of attention in recent years and played a critical role in both optical sensing and communication fields. In this paper, a new method based on Rayleigh backscattering to highly compress the laser linewidth was proposed and demonstrated theoretically and experimentally. By theoretical analysis and simulation, Rayleigh backscattering can be collected in any waveguide structure and all wave bands, which could have a revolutionary impact on the field of laser. A single-longitudinal mode fiber ring laser with 130-Hz linewidth was achieved with self-injection feedback structure at normal atmospheric temperature. The linewidth compression based on Rayleigh backscattering lies in the fact that laser linewidth after scattering is narrower than that of incident light in high Rayleigh scattering structure. The self-rejection feedback method expanding free spectra range of laser cavity simultaneously was used to further suppress the mode-hopping and stabilizing output. Experimental results showed that the laser linewidth can be easily narrowed to hundreds of hertz with side-mode suppression up to 75 dB. This agrees with the theoretical analysis and simulation results qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call